log计算公式:x=log(a)(N)。
1.log(c)(a*b)=log(c)a+log(c)b --相当于同底数幂相乘,底数不变“指数相加” log(c)(a/b)=log(c)a/log(c)b --相当于同底数幂相除,底数不变“指数相减”2.log(c)(a^n)=n*log(c)a --相当于幂的乘方,底数
log函数的转换?
log函数运算公式转换:
1、log(a)(M·N)=log(a)M+log(a)N。
2、log(a)(M÷N)=log(a)M-log(a)N。
3、log(a)M^5261n=nlog(a)M。
4、log(a)b*log(b)a=1。
5、log(a)b=log(c)b÷log(c)a。
处理的方法:
1、化为指数式。
对数函数与指数函数互为反函数,它们之间有着密切的关系:logaN=bab=N,因此在处理有关对数问题时,经常将对数式化为指数式来帮助解决。
2、利用换底公式统一底数。
换底公式可以将底数不同的对数通过换底把底数统一起来,然后再利用同底对数相关的性质求解。
3、利用函数图象。
函数图象可以将函数的有关性质直观地显现出来,当对数的底数不相同时,可以借助对数函数的图象直观性来理解和寻求解题的思路。